Preparing for the future.... Never forgetting the past! Office of Naval Research Code 30 Thrust Area Willful Intents FY12 - FY13 # NCW/Interoperability TIA - Willful Intent ## **Current Capability:** - Network interoperability is achieved through manually configured gateways; networks are static and manually configured and managed - For interoperability, systems are linked pair-wise. "One-size fits all" approaches are computationally cumbersome - Authentication of users is centralized and require reachback; security associations are typically hardware-based and/or point-to-point - Existing software applications do not tolerate the latency and intermittency of tactical networks | FY | Desired Capability | S&T Challenges | S&T Solution – TRL 5/6 | |-------------------------------|---|--|---| | Near
Term
FY13-
FY15 | Networking and network management that support mobility inter- and intra-network; network access through multiple gateways Ability to access and use information from multiple sources | Managing complexity and dynamics of networks: optimization under uncertainty; relaxation mathematics Devising adaptable data architecture that works over tactical networks and accepts both existing and future systems: object-oriented programming | System Integration Environment uses object-based model providing translation into reference implementation and tactical network transport adaptation DTCN EC: provides policy-based network management; adaptive routing and radio-router interface | | Mid
Term
FY16-
FY18 | Ready access to relevant information by appropriate users Management of heterogeneous networks Cross-domain security (software solution) | Autonomously determining and locating needed data, and providing information products; providing disconnected services—distributed control algorithms Representing network state in dynamic situations (within NW time constant): applying stateless techniques Enabling scalability of flat networks while minimizing control overhead: non-monotonic logic Providing key exchange and session management for intermittent networks | Mission model with learning algorithms; EAITE EC Proposal FY14; server-less operations Global optimization with local information Alternative routing and transport (w/o TCP/IP): flow-based optimization Layer 2/3 security sessions End-to-end network state estimate | | Far
Term
FY19-
FY21 | Full system interoperability/information abstraction Transparent mobility and mobile security | Devising lightweight (low overhead), persistent information and network services: "scale-free" networks Distributing authentication authority without compromising network security | Mathematically provable software quality STTR Network Theory & Fully Homomorphic Encryption Co-development of information, network and security theory (YIP); understanding system complexity Robust Trust Models Value of information (STTR?) | #### **Endstate:** • Rapid discovery, usability, and secure exchange of <u>needed</u> information by all users. ## **OTH/Gateways TIA – Willful Intent** ## **Current Capability:** - Proliferation of radios and antennas in vehicles provide a significant visible signature; Mobile command center architectures do not support emerging needs or forthcoming network radios - Tactical allocation of military SATCOM is low-priority; Commercial SATCOM is expensive; SATCOM can be jammed; RF spectrum is crowded - Mobile command centers require high-throughput reach-back comms; SATCOM on-the-move terminals are expensive and are visual targets - HF radio is unpredictable and low-throughput | FY | Desired Capability | S&T Challenge | S&T Solution – TRL 5/6 | |-------------------------------|---|---|---| | Near
Term
FY13-
FY15 | Regimental-level mobile gateway with reachback | Compact OTM SATCOM terminals: maintaining tracking with simplified INS without illuminating adjacent satellites (1-1/2° apart) Compact, modular airborne relay packages: reducing antenna co-site interference | M2C2 Beyond Line-of-Sight Tactical Communications
Relay (completed); Software Reprogrammable
Payload (SRP) | | Mid
Term
FY16-
FY18 | Compact multi-network
communications gateway package Alternatives to SATCOM for
backbone links Improved HF communications | Reducing number and size of broadband antennas (\(\lambda\)/2 dipole antenna rule-of-thumb); Low SWAP VHF/UHF RF components (Isolation of frequencies and Tx/Rx; minimize reflections and IM distortion Optical Communications Reducing terminal cost and complexity: optics and tracking systems Multi-function relay: developing software radio architecture that can manage power, dynamic range and frequency range differences HF communications Improving SNR and channel capacity | Meta-material compact antennas; Using platform as radiator and platform coupling of antennas; Characteristic Modes STTR; High Power Hopping Filter SBIR; RF to photonics to RF High-performance tunable filters Laser Comms EC SRP wideband HF MIMO :Advanced channel models and estimates Compact HF Antennas STTR (completed) | | Far
Term
FY19-
FY21 | Mobile platoon with battalion-level information capabilities | Reliable higher-throughput OTH communications within weight, size and power constraints Broadband PAs are inefficient: Improving impedance matching over f band | Broadband Tx/Rx isolation: ferrites and device architectures Advanced Amplifier materials: graphene | ### **Endstate:** • Bi-directional high-throughput reachback and terrestrial communications for Regiment and below. # **Small Unit Technologies TIA – Willful Intent** ### **Current Capability:** - Tactical communications are unreliable and range-limited in restricted environments (i.e., cities, forests, valleys, caves) - Low cost software radio platforms do not meet military security requirements; Antennas are not adaptable to changing needs and conditions - Vital situational awareness information is manually provided to small unit Warfighters and often does not meet needs - It is not possible to provide an adequate communications, positioning, and C2/SA/decision support capability to individual distributed Warfighters within low-SWAP and cost constraints | FY | Desired Capability | S&T Challenge | S&T Solution – TRL 5/6 | |-------------------------------|--|--|--| | Near
Term
FY13-
FY15 | Provide ability to manage multiple levels
of security on a single device Assured connectivity | Adequate, verifiable, partitioning of classified and unclassified processors, memory, data bus Maintaining link margin in high-interference, high attenuation environments: SNR improvement | Software radio security architecture SBIR Very-narrow bandwidth communications (complete) | | Mid
Term
FY16-
FY18 | Radios and antennas that automatically adapt to the situation (include support of 3G/4G and tactical SATCOM) Automated provision of tactically relevant information RF-based position location | Complexity of mode optimization; compactness of antennas: exploiting the "slow-wave" phenomenon (L-C ratio) in small apertures Operating over intermittent, low-throughput networks Relative position only, dependent on radio BW and SNR: managing/exploiting multipath | Adaptable mode radio – maximizes throughput/ minimizes energy; parasitic element antennas Machine learning; contextual content management Distributed computing/hybrid computing Quasi-absolute position: belief-based learning & RF mapping | | Far
Term
FY19-
FY21 | High-assurance ,efficient, information
exchange with & within small units | Physical limitation of broadband antenna miniaturization: impedance; pattern control (Chu and Fano limits) Channel capacity is asymptotically approaching Shannon limit Methods of automatically labeling information for meaning, e.gontologies, are manually generated | Closely coupled radiators (YIP) Polarimetric communications; advanced non-Gaussian encoders/decoders; interference alignment Information salience STTR: automatic generation of ontology-like structures | ### **Endstate:** • Battalion-level situational awareness, intelligence products, and decision support provided to distributed small units.